Language Outcomes and Predictors of Success in Young Children Who Are Deaf or Hard of Hearing: A Multi-Site Perspective

WREIC June 14, 2023

Disclaimer

The findings and conclusions in this presentation are those of the author and do not necessarily represent the official position of the Centers for Disease Control and Prevention (CDC).

Acknowledgement

This work was supported by the Centers for Disease Control and Prevention (CDC), specifically via

- Cooperative agreement award #6 NU50DD0000099, NCBDDD Outcomes and Developmental Data Assistance Center for EHDI Programs (ODDACE) (9/1/2020 to 8/31/2024)
- Grant funding from the Disability Research and Dissemination Center (DRDC) through its cooperative agreement with the CDC, award #5U19DD00128, subaward to CU-Boulder #20-3968 (9/30/2019 to 9/29/2020)

Presenter

Allison Sedey, Ph.D.

University of Colorado-Boulder

Colorado School for the Deaf and the Blind

Allison.Sedey@colorado.edu

Today's Topics

- Describe the language levels of young children who are D/HH
- Identify factors associated with better language outcomes
- Identify factors that put some children at more risk for language delay
- Propose clinical implications of findings

Assessment Instruments

Developmental Assessment of Young Children - DAYC-2

- Based on observation and parent report
- Examined Receptive and Expressive Language subscales
- Adapted to reflect abilities in both spoken and sign language

MacArthur-Bates Communicative Development Inventories

- Assesses diversity of vocabulary
- Parent-report instrument
- Includes both spoken and signed expressive vocabulary

- Public health surveillance project
- Supported by the CDC
- Language outcome data collected on children who are D/HH, birth to 3 years
- Data collected from 9/1/2020 to present
- Data obtained from 17 different programs in 15 different states
- www.colorado.edu/center/oddace

Participating States (ODDACE)

- Arizona
- Colorado
- Florida
- Idaho
- Illinois
- Indiana
- Maine
- Massachusetts

- North Dakota
- South Dakota
- Tennessee
- Texas
- Vermont
- Wisconsin
- Wyoming

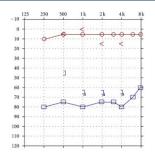
Question 1

What factors are associated with better language outcomes in children with bilateral and unilateral hearing differences?

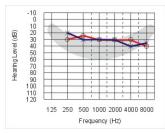
Number of Participants

- 597 children (DAYC-2 outcomes)
 - Bilateral = 404
 - Unilateral = 193

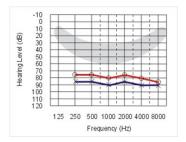
- 532 children (MacArthur outcomes)
 - Bilateral = 358
 - Unilateral = 174


Participant Criteria for Language Outcomes Analysis

- Birth to 3
- Unilateral or bilateral hearing differences
- All levels of hearing difference
- Any home language
- Any communication mode
- No disabilities thought to affect speech or language development
- Most recent assessment


Language Outcomes Analysis: Participant Characteristics

- Chronological age
 - Range = 2 to 36 months
 - Mean = 22 months
- Gender
 - Boys = 53%
 - Girls = 47%


Hearing Levels

Unilateral = 32%

Bilateral: Mild & Moderate = 45%

Bilateral: Mod-Sev to Prof = 23%

Participant Characteristics

- English is spoken and/or written language of the home = 90%
- Hispanic ethnicity = 41%
- White race = 87%
- Hearing parents = 90%
- Average # of EI sessions per month = 4.2

Meeting EHDI Guidelines

EHDI guideline category	Percentage
Identification by 3 months	77%
Intervention by 6 months	69%
Meets 1-3-6	62%

Determining Predictors of Language Outcomes

- Model selection approach
 - Forward-backward stepwise
 - Determines which predictors contribute significantly to the model, balancing model fit with complexity
- Statistical Analysis:
 - Linear regression

Three Models: Outcome Variable

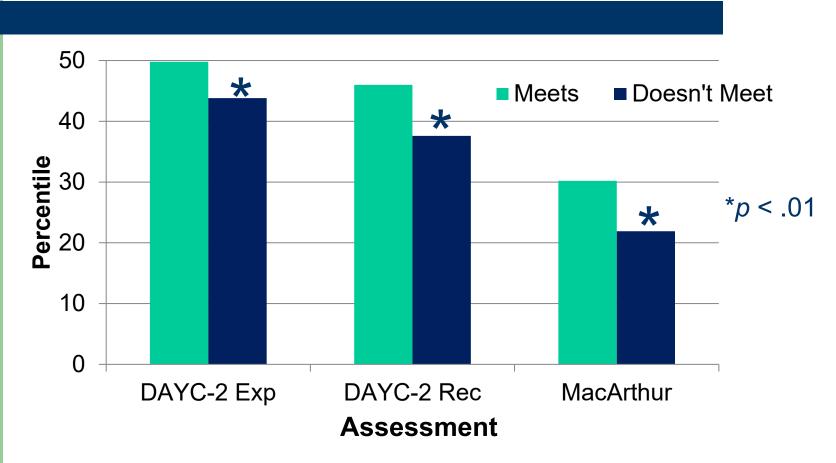
- Three predictive models each examining a different language outcome
 - DAYC-2 Expressive Language
 - DAYC-2 Receptive Language
 - MacArthur Expressive Vocabulary
- Used percentile scores for each measure

Significant Predictors of Language Outcomes

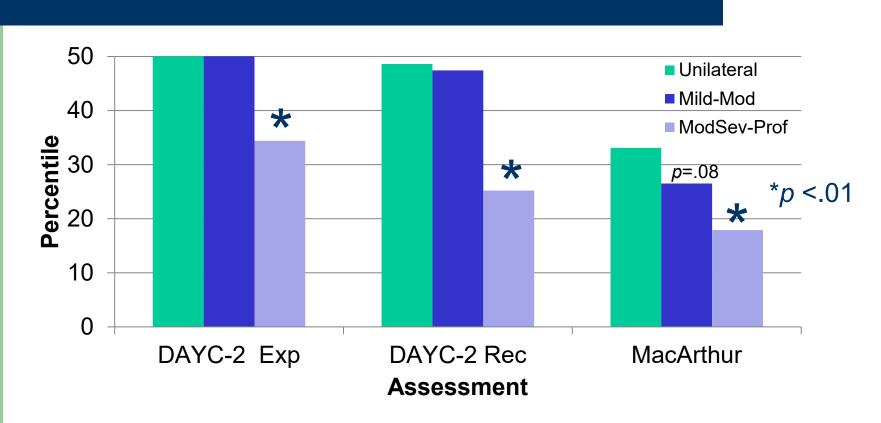
Significant predictors of all 3 language measures (p < .01)

- Primary caregiver years of education
- Mild and Mod hearing levels vs. Mod-Sev to Profound
- Meeting EHDI 1-3-6 guidelines
- Not significant:
 - Unilateral vs. Mild and Mod bilateral

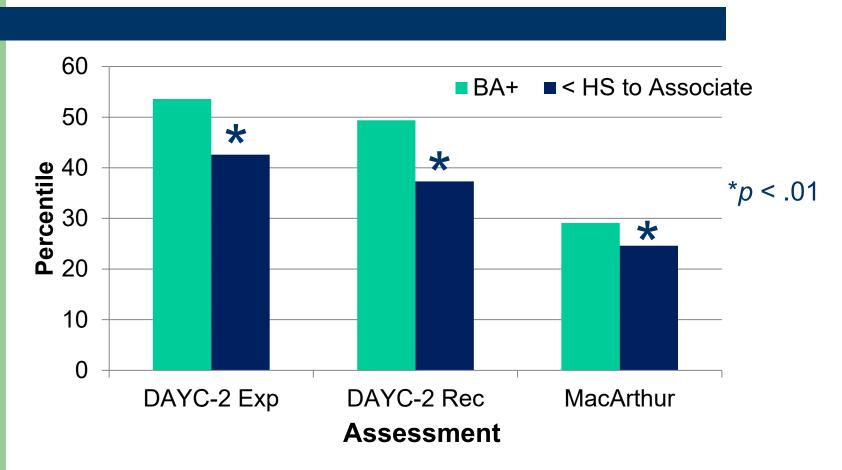
Significant Predictors Language Outcomes

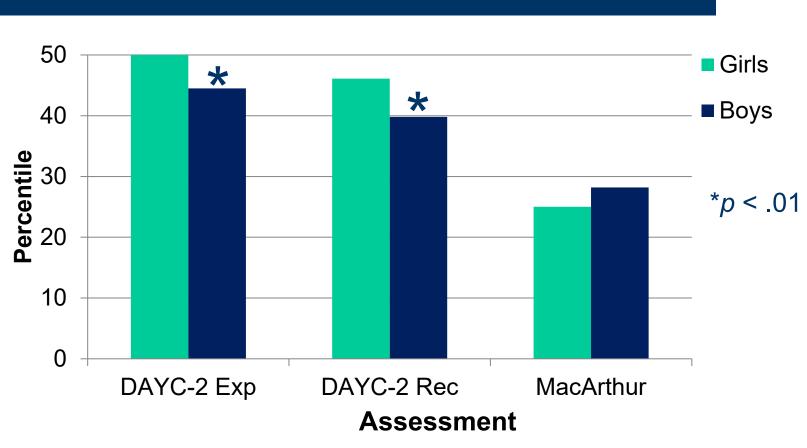

Significant predictor (*p* < .01) of DAYC-2 but not MacArthur

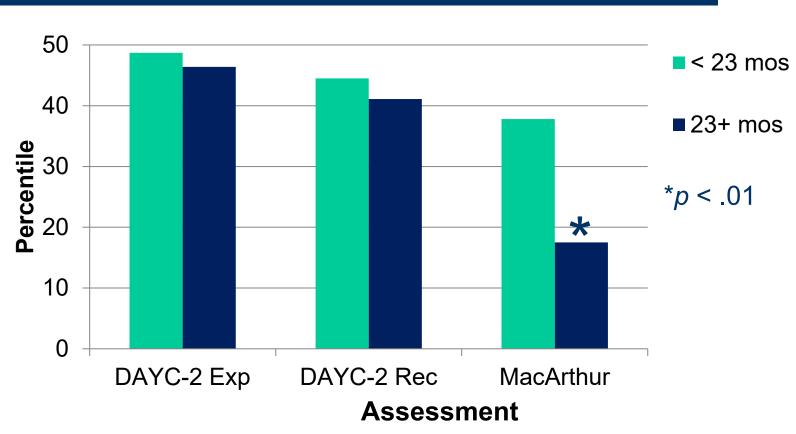
- Girl vs Boy (girls higher percentile scores)
- MacArthur has separate norms for girls and boys so accounts for sex differences


Significant predictor (*p* < .01) of MacArthur but not DAYC-2

 As chronological age increases, vocabulary percentile decreases (gap widens with age)


Mean Language Percentiles: Meets EHDI 1-3-6 Guidelines

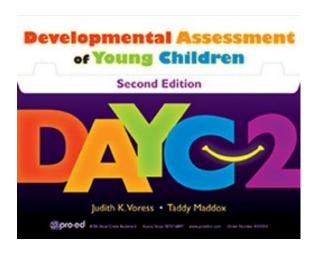

Mean Language Percentiles: Unilateral and Bilateral


Mean Language Percentiles: Primary Caregiver's Level of Education

Mean Language Percentiles: Boys vs. Girls

Mean Language Percentiles: Younger vs. Older

Question 2

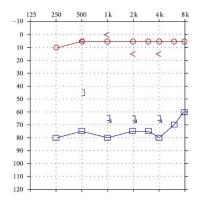

Do children who meet 1-2-3 demonstrate better language outcomes than children meeting 1-3-6 (but not 1-2-3)?

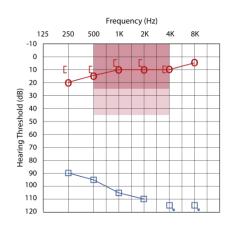
Number of Participants

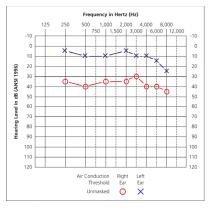
DAYC - 2 = 369

MacArthur CDI = 311

EHDI 1-2-3 vs. 1-3-6

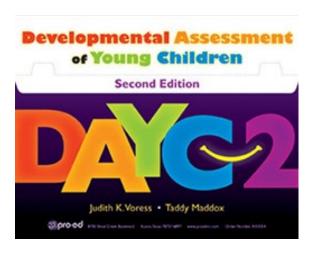

Controlling for sex, chronological age, degree/laterality of hearing levels, and primary caregiver's level of education...


There were NO significant differences in percentile scores for any of the three language measures for children meeting 1-2-3 vs. 1-3-6


Children with Unilateral Hearing Differences

Question 3

What factors are associated with better language outcomes in children with unilateral hearing differences?



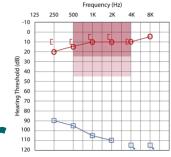
ODDACE: Number of Participants with Unilateral Hearing Difference

DAYC - 2 = 206

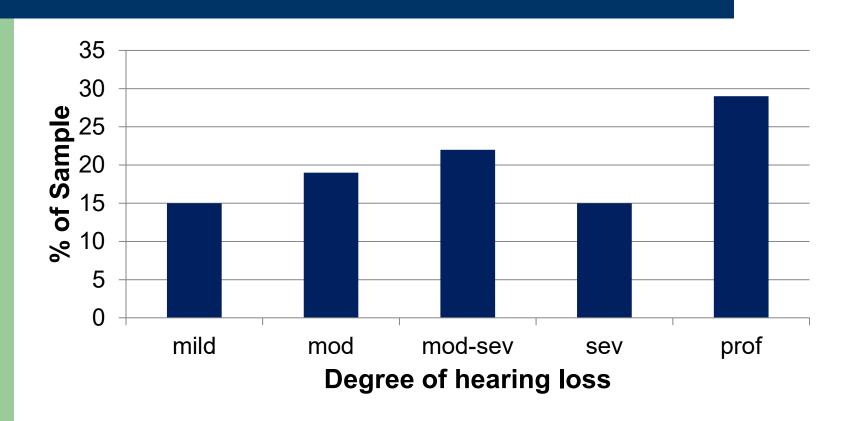
MacArthur CDI = 197

Participant Criteria for Language Outcomes Analysis

 No disabilities thought to affect speech or language development

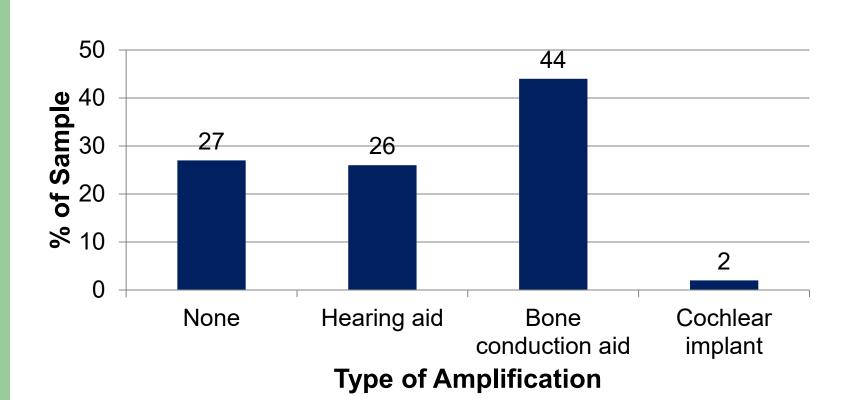

Most recent assessment

Language Outcomes Analysis: Participant Characteristics

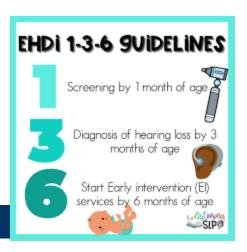

- Chronological age
 - Range = 1 to 36 months
 - Mean = 21 months
- Gender
 - Boys = 52%
 - Girls = 48%
- Affected ear
 - Right = 56%
 - Left = 44%

Participant Characteristics

- English is spoken and/or written language of the home = 87%
- Hispanic ethnicity = 44%
- White race = 84%
- Hearing parents = 95%



Hearing Level in Affected Ear



Amplification Use

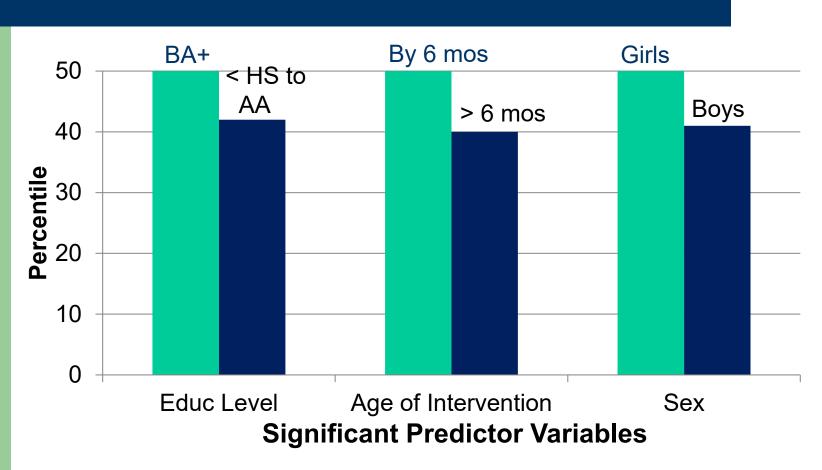
Meeting EHDI Guidelines

EHDI guideline category	Percentage
Identification by 3 months	76%
Intervention by 6 months	61%
Meets 1-3-6	54%

Amount of Intervention

- 62% of families receive El services once or twice a month
- Mean = 2.9 sessions per month

Children with bilateral loss in ODDACE:
 Mean = 5.1 sessions per month

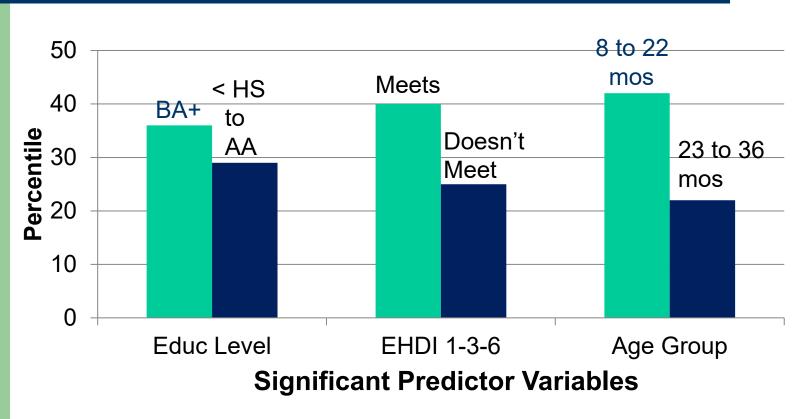

Factors NOT Associated with Language Outcomes

- Affected ear (right vs. left)
- Hearing level in affected ear
- Presence of auditory neuropathy
- Home language (English vs. Spanish)
- Parents' hearing status (deaf vs. hearing)
- Use of amplification (something vs. none)

Significant Predictors of DAYC-2 Language Outcomes

- Primary caregiver years of education
- Age of intervention
- Sex

Significant Predictors of DAYC-2 Receptive Language Percentile Scores



Mean percentile for hearing children in the normative sample = 50

Significant Predictors of MacArthur Vocabulary Outcomes

- Chronologic age
 - 8- to 22-month-olds had higher percentiles than 23- to 36-month-olds
- Meeting EHDI 1-3-6 guidelines
- Primary caregiver years of education

Significant Predictors of MacArthur Percentile Scores

Mean percentile for hearing children in the normative sample = 50

Frequency of Intervention and Language Outcomes

Question 4

Does the number of early intervention sessions a child receives impact their expressive vocabulary scores?

Question 5

Does a child's
language ability
impact the number of
early intervention
sessions the receive?

Description of Database: NECAP

- Research project
- Supported by the CDC
- Language outcome data collected on children who are D/HH, birth to 3 years
- Data collected from 2005 to 2020
- Data obtained from 13 different programs in 12 different states

Participating States (NECAP)

- Arizona
- California
- Florida
- Idaho
- Indiana
- Maine

- New Mexico
- North Dakota
- Texas
- Utah
- Wisconsin
- Wyoming

Participant Criteria for Intervention Frequency Analysis

- Birth to 3
- Bilateral hearing differences
- All levels of hearing difference
- English is written language of the home language
- Any communication mode
- No disabilities thought to affect speech or language development

Participants

- Children assessed three times
- On average, 9 months between assessments

	Mean CA (mos)	n
Time 1	13.3	210
Time 2	22.3	164
Time 3	31.5	130

Outcome Measure

- Expressive vocabulary score on the MacArthur-Bates Communicative Development Inventory
- Calculated Language Quotient
 - Language age/CA

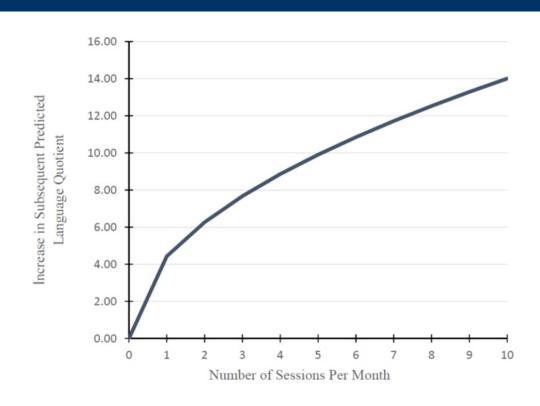
Language Quotients and Number of Sessions Over Time

	Mean Language Quotient*	Mean Sessions per Month
Time 1	94.3	3.4
Time 2	82.0	4.0
Time 3	73.7	4.0

Language Quotient of 100 means Language Age is exactly commensurate with CA

^{*}Language Quotient = Language Age/CA *100

Statistical Analysis


- Structural Equation Model
 - Three wave
 - Cross lagged
- Controlled for
 - Mother's level of education
 - Meeting EHDI 1-3-6 guidelines
 - Degree of hearing loss

Results: Do Number of Sessions Predict Later Language Ability?

- Number of sessions at Time 1 predicted language score at Time 2
- Number of sessions at Time 2 predicted language scores at Time 3

More sessions resulted in higher language scores approx. 9 months later

Relationship Between Number of Sessions and Later Language Quotients

Results: Does Language Ability Predict Number of Sessions?

- Language scores at Time 1 did NOT predicted number of sessions at Time 2
- Language scores at Time 2 did NOT predicted number of sessions at Time 3

Summary of Conclusions and Implications for Practice

General vs. Specific Language Assessments

- Children typically scored higher on the DAYC-2 (a general measure of language) compared to the MacArthur (an in-depth look at vocabulary)
- General measures of language often do not measure quality/complexity of a skill
- For example, on the DAYC-2: "Tells you what he/she is doing"
 - "Eat" vs. "I'm eating a turkey and cheese sandwich"
 - Both get the same score

General vs. Specific Language Assessments

- Language scores on a general language test (the DAYC-2) were in the average range for children with UHL who did not have other factors known to negatively impact language
- However, the MacArthur CDI was sensitive to gaps in vocabulary diversity in children with unilateral hearing differences
 - 31% of children with UHL were significantly delayed (scoring at or below the 10th %ile)

Selecting Language Assessments: Clinical Implications

- Rigorous and specific language tests (e.g., the MacArthur CDI) should be part of the assessment battery with children who are deaf/hard of hearing
- This is especially important for children with unilateral hearing differences where gaps may be more difficult to detect

Expressive Vocabulary

- Acquiring an age-appropriate lexicon is a challenge for many children who are D/HH with 42% falling at or below the 10th percentile
- Gap between CA and vocabulary age increases over the birth to 3 period

Expressive Vocabulary Delay: Clinical Implications

 Understand vocabulary size benchmarks and share this info with families

- Average expressive vocabulary size in hearing children:
 - \triangleright 12 months = 5 words
 - > 18 months = 85 words
 - \geq 24 months = 300 words

Expressive Vocabulary Delay: Clinical Implications

Even if a child is off to a great start...

- Assess language at 6-month intervals using norm-referenced instruments
- Include a rigorous and specific vocabulary test (e.g., the MacArthur CDI) in your test battery

Risk Factors for Language Delay

- Not meeting EHDI 1-3-6 guidelines
- More significant hearing levels (especially moderately-severe through profound)
- Lower levels of primary caregiver education

EHDI Guidelines

- Meeting EHDI 1-3-6 is associated with better language outcomes
- In this study, only 61% of children met EHDI 1-3-6 guidelines
- Effort to increase this percentage is well supported

EHDI Guidelines: Clinical Implications

- Share with prospective families the benefits of starting intervention early
- The ability of children to reach their full language potential is jeopardized by a "wait and see" approach
- This is true for both children with bilateral and unilateral hearing differences,

EHDI Guidelines: Clinical Implications

- The higher levels of burden and stress on families, professionals, and systems to achieve a new target of 1-2-3 does not seem warranted
- Instead, put effort toward increasing adherence to 1-3-6

Risk Factors: Clinical Implications

- Increased frequency of intervention for children with one or more characteristics associated with lower language skills
- Professional development focused on the most effective ways to work with:
 - Families with less formal education
 - Children with more significant hearing levels (especially moderately-severe through profound)

Frequency of Intervention Sessions

- Greater number of sessions per month predicted higher vocabulary scores 9 months later
- Vocabulary ability did not predict the number of sessions families received at subsequent points in time

Frequency of Intervention: Clinical Implications

- Consider objective measures of a child's language levels when determining frequency of service
- Share with families that research supports that a higher number of intervention sessions per month is associated with better child language outcomes

With Appreciation

- to the families who shared their children's information with ODDACE and NECAP
- to the interventionists who took the time to complete and send in the assessments
- to the ODDACE Assessment Coordinators
- to the ODDACE Project Assistants
- to our database manager Kory Karr
- to our statisticians Cait Berry & Craig Mason